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ABSTRACT

The effect of small spatial-scale cloud variations on radiative transfer in cloudy atmospheres currently receives
a lot of research attention, but the available studies are not very clear about which spatial scales are important
and report a very large range of estimates of the magnitude of the effects. Also, there have been no systematic
investigations of how to measure and represent these cloud variations. The cloud climatology produced by the
International Satellite Cloud Climatology Project (ISCCP) is exploited to 1) define and test different methods
of representing cloud variation statistics; 2) investigate the range of spatial scales that should be included; 3)
characterize cloud variations over a range of time- and space scales covering mesoscale (30–300 km, 3–12 h)
into part of the lower part of the synoptic scale (300–3000 km, 1–30 days); 4) obtain a climatology of the optical
thickness, emissivity, and cloud-top temperature variability of clouds that can be used in weather and climate
GCMs, together with the parameterization proposed by Cairns et al., to account for the effects of small-scale
cloud variations on radiative fluxes; and 5) evaluate the effect of observed cloud variations on the earth’s
radiation budget. These results lead to the formulation of a revised conceptual model of clouds for use in radiative
transfer calculations in GCMs. The complete variability climatology can be obtained from the ISCCP Web site
at http://isccp.giss.nasa.gov.

1. Introduction

Calculating radiative transfer in cloudy atmospheres
is challenging because clouds introduce inhomogenei-
ties of the optical medium, and hence, of the absorption,
emission, and scattering of radiation, over a very wide
range of time- and space scales. Visual observations of
clouds from the surface and aircraft have emphasized
some basic characteristics in the representation of cloud
variations in radiative transfer models (RTMs). The
most basic division of cloud-type names, cumulus and
stratus, highlights the contrast between clouds that occur
as ‘‘isolated’’ elements with similar horizontal and ver-
tical dimensions and clouds that occur in extensive lay-
ers with horizontal dimensions that are much larger than
their vertical dimension. Cumulus also highlight the
concept of highly variable and partial areal cloud cover,
while stratus highlight the dramatic difference between
clear and cloudy conditions. Because the development
of RTMs, especially for use in global atmospheric cir-
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culation models (GCMs), has always been strongly con-
strained by computational limits, the best current, prac-
tical representation of clouds at larger scales emphasizes
the ‘‘thin’’ layer structure by using plane-parallel layers
that are horizontally uniform at smaller (subgrid) spatial
scales except for the variation of areal cover. The ver-
tical, time, and larger-scale horizontal variations are then
treated explicitly by varying the properties and areal
coverage of these cloud layers. The advent of the dou-
bling-adding technique (Hansen and Travis 1974) al-
lowed for very detailed, but still practical, treatment of
the vertical variations of atmospheric properties (e.g.,
Lacis and Oinas 1997), but little advance over the plane-
parallel representation of clouds has been made until
recently.

Efforts continue to understand the consequences of
smaller-scale horizontal inhomogeneity for radiative
fluxes (called the 3D problem to contrast it with the 1D
plane-parallel treatment) and to reexamine the relation-
ships among cloud water content, radiation, and at-
mospheric dynamics at the smallest scales, stimulated
by the advent of prognostic cloud water schemes in
GCMs (e.g., Sundqvist 1978; Smith 1990; Tiedtke 1993;
Del Genio et al. 1996; Fowler et al. 1996). The re-
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maining problem, once the water mass has been cor-
rectly determined for each model layer in a GCM, is
how to distribute the water, both horizontally in a given
layer and vertically in terms of cloud layer overlaps (Li
et al. 1994; Oreopoulos and Barker 1999). The simplest
aspect of this dilemma—how to average over a nonlin-
ear relationship—has sometimes been combined with
the problem of treating the true 3D cloud effects on
radiative transfer (cf. Cahalan et al. 1994a; Barker
1996a), but this is not necessary. A brief summary of
the many investigations of radiative transfer at smaller
scales, mostly at solar wavelengths, is as follows. First,
there is a smallest scale of cloud variability, 100–300
m, that is expressed in the shortwave radiation field
(Cahalan 1989; Marshak et al. 1995, 1998b; Byrne et
al. 1996; Davis et al. 1997). Second, unresolved vari-
ability in cloud properties can lead to a difference be-
tween the mean albedo of a scene and the albedo of the
mean properties of the scene, which effect has been
termed the plane-parallel bias. Estimates of the mag-
nitude of this effect vary over an albedo range from
0.025 to 0.30 (Davies 1978; Hignett 1987; Barker and
Davies 1992; Kobayashi 1993; Cahalan et al. 1994a,
1995; Coley and Jonas 1996; Loeb and Coakley 1998;
Marshak et al. 1998a; Oreopoulos and Davies 1998a;
Barker et al. 1999), which has been discussed by Pincus
et al. (1999). Third, there are a number of different
methods that have been proposed for representing small-
scale cloud variability and parameterizing its effect on
radiative fluxes (Stephens 1988a,b; Kobayashi 1991;
Cahalan et al. 1994b; Barker 1996a,b; Barker et al.
1996; Oreopoulos and Davies 1998b; Barker and Fu
1999; Cairns et al. 2000).

Satellite observations have provided a somewhat dif-
ferent perspective. First, satellite observations show that
cloud properties actually vary over a much larger range
of spatial scales than can be observed from the surface
or aircraft, essentially covering all spatial scales up to
planetary scales (Rossow and Cairns 1995). Moreover,
the power spectrum of these cloud variations is contin-
uous with a negative slope; that is, the amplitude of
cloud variations is much larger at the larger scales of
the atmospheric general circulation than it is at the
smaller (‘‘turbulent’’) scales usually observed by sur-
face or aircraft observers. Second, the satellite view-
point suggests that the scattered and broken cloud types
actually tend to occur over areas that are much larger
in scale than the individual cloud elements (Seze and
Rossow 1991b) with a variety of organizations at in-
termediate scales (e.g., Ramirez and Bras 1990; Nair et
al. 1998). Consequently, these cloud types could actu-
ally be considered to be layers that are ‘‘broken’’ by
small-scale regions of zero cloud mass density (i.e.,
clear sky). This interpretation is reinforced by the ob-
servation that, when cloud cover falls below 100% on
scales of the order of 100 km, the average cloud mass
density is also much lower (Barker et al. 1996; Con-
sidine et al. 1997). As Cahalan et al. (1994a) pointed

out, the effects of horizontal variability are not only still
present for complete overcast, they are larger in mag-
nitude because the average mass density and its range
of variation are larger. Thus, we could say that all clouds
occur in physically thin (,3000 m; Wang et al. 2000)
layers (the notable exception being penetrating convec-
tive towers) and that there is only one radiative transfer
problem of accounting for the effects of smaller-scale
horizontal cloud variability (we return to the question
of vertical structure at the end).

The variety of approaches used and the wide range
of results obtained in these studies have left some ques-
tions unanswered. What is the most effective way to
represent small-scale cloud variations in radiative flux
calculations? How do we measure cloud variations on
the requisite scales? Precisely what range of spatial
scales of cloud variability should be included? Does a
useful distinction between cloud cover and cloud mass
density variations exist at smaller scales (cf. Rossow
1989; Byrne et al. 1996)?

In this paper, we use the International Satellite Cloud
Climatology Project (ISCCP) datasets to address these
questions. In section 2 we define a general variability
statistic for optical media at the smallest scales, discuss
the range of spatial scales that should be included in
determining its magnitude, define a satellite-based mea-
sure of cloud variability and calculate different measures
of the effects of small-scale cloud variability on radi-
ative fluxes. This discussion leads to the formulation of
a revised conceptual model of clouds at the end of sec-
tion 2. In section 3 we use the most detailed ISCCP
dataset to examine cloud variations over the range of
time- and space scales covering the mesoscale (30–300
km, 3–12 h) into the lower part of the synoptic-scale
range (300–3000 km, 1–30 day) and to test our satellite-
based measure of variability effects on radiative fluxes
(this study is supplemented by an appendix). In section
4 we present a climatology of the mesoscale variability
of cloud optical thickness, emissivity, and temperature
that can be used in current GCMs to test and refine their
treatment of cloud–radiation interactions. In section 5
we illustrate the effects of the small-scale cloud vari-
ability on the earth’s radiation budget and section 6
discusses some implications for modeling cloud–radi-
ative interactions.

2. Representing cloud variability

a. Definition of the variability statistic

Since our purpose is to provide a climatological quan-
tification of mesoscale (i.e., global circulation model
subgrid scale) cloud variability, we seek statistical rep-
resentations of the radiative impacts of inhomogeneous
clouds: quantitative measures of the albedo and emis-
sivity biases that would occur if naturally occurring
clouds were treated as horizontally homogeneous at
these smaller scales. This statistical approach is also a
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more practical way to account for the systematic effects
of smaller-scale cloud variations; rather than insisting
on high accuracy in the representation of the particular
details of particular clouds, we parameterize the radi-
ative effects of a statistical aggregate. This approach
differs from some previous studies (e.g., Barker 1996a;
Barker et al. 1999), which have tried to derive analytical
models of the optical thickness distributions for specific
cloud regimes (e.g., marine stratus, fair-weather cu-
mulus, etc). The best measure of cloud variability should
be generally applicable without regard to location, sea-
son, and cloud type. In particular, we avoid methods
that assume a specific analytical shape for the optical
thickness distributions (e.g., lognormal, exponential,
gamma, see the appendix).

The measure of variability is based on Cairns et al.
(2000), who propose a correction factor, ep, derived for
a generalized inhomogeneous cloud particle density dis-
tribution, that is used to modify the radiative transfer
equations for clouds being treated as plane-parallel for
computational convenience (the subscript, p, emphasiz-
es that this quantity relates to the cloud particle density
distribution). The factor, ep, is derived for a randomly
varying, isotropic, three-dimensional density distri-
bution and is used to renormalize the radiative param-
eters of the cloud: extinction cross section (sext), single-
scatter albedo (Ã0), and asymmetry parameter (g). The
radiation field of an inhomogeneous cloud is then cal-
culated for an equivalent homogeneous cloud with these
rescaled parameters. The renormalization of the radia-
tive parameters for a randomly varying cloud medium
with relatively weak variability is (Cairns et al. 2000):

s9 5 (1 2 e )s (1a)ext p ext

e (1 2 Ã )p 0
Ã9 5 Ã 1 2 (1b)0 0 [ ]1 2 ep

e (1 2 Ã g)p 0
Ã9g9 5 Ã g 1 2 (1c)0 0 [ ]1 2 ep

with

1
e 5 (a 2 Ïa 2 4V ), and (2a)p 2

1 1 s lext ca 5 , (2b)
s lext c

where V is the relative variance of the particle density
distribution (variance divided by the square of the mean
density) and lc is the effective correlation length of the
variations. This parameterization has the obvious con-
sequence that variability on scales smaller than the
transport mean free path has no effect on the mean
radiative properties of the cloud (cf. Marshak et al. 1995,
1998b). In cases where the correlation length is of the
same order as the photon mean free path (sextlc ø 1)

and the particle density fluctuations have lognormal sta-
tistics, the renormalization depends solely on the sta-
tistics of the cloud particle density distribution.

b. Extension from small to larger scales

To evaluate the effects of cloud variability on radi-
ative fluxes, (1a) can be transformed to define an ef-
fective optical thickness, t9, for a varying particle den-
sity distribution:

t9 5 (1 2 e )t, (3)p

where

t [ s (zz) dz 5 Y 5 cosu s (zs) dzE ext z E ext

5 cosuY . (4)s

Here Y is the optical path (the line integral of extinction)
and z and s are unit vectors in the vertical and in any
arbitrary direction, respectively. This definition of total
optical thickness follows Goody and Yung (1989) and
the last part of (4) is formally valid only for a stratified
atmosphere in which the extinction varies only in the
vertical direction (Fig. 1a). In this idealized situation
there is no restriction on the horizontal length scale over
which optical thickness is well-defined since the line
integrals of extinction over the vertical and over all slant
paths are simply related as in (4). Thus, in this case the
optical thickness is unambiguous and can be determined
from the optical path evaluated at an arbitrary angle (Yz

or Ys). However, horizontal variability in the extinction
field destroys this relation (Fig. 1b), where now the
extinction, sext(x, z, l), varies horizontally with a char-
acteristic length scale, l, and a spaceborne instrument
performs an integration along the line of sight and over
an area defined by the instrument’s field of view, rep-
resented by a length, L. Now the optical thickness cannot
be simply related to the spatially varying optical path
values as in the ideal case. In such a situation it is no
longer clear what the proper definition of optical thick-
ness should be. Reasonable choices might be the ver-
tically or hemispherically integrated extinction averaged
over l or L.

However, it is much simpler to restore the relation
between optical thickness and optical path embodied in
(4) by replacing the condition of absolute horizontal
homogeneity with one of statistical homogeneity. This
situation is shown in Fig. 1c, where the remotely sensed
optical path is evaluated over a region that is large com-
pared to the scale of the horizontal variability, that is,
L k l,
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FIG. 1. Schematic illustrating different assumptions about varia-
tions of optical media used to model radiative transfer through cloudy
atmospheres: (a) horizontally homogeneous layers with properties
that vary only in the vertical, (b) horizontally and vertically inhom-
geneous layer, (c) horizontally and vertically inhomogeneous layer
that is statistically homogeneous in the horizontal direction.

s (Lx, zz, l) dz dL dLE ext

t 5L

dL dLE
cosu s (Lx, zs, l) dz dL dLE ext

ø . (5)

dL dLE
In essence the process is simplified by letting the sat-
ellite instrument do the integration (averaging) over an
appropriate scale. All that remains is to specify a rea-
sonable lower bound for l, along with a condition on
L (e.g., L * 10l).

An important conclusion from this discussion is that
there is a minimum horizontal scale at which the optical
thickness is a meaningful quantity. This scale is imposed
by the interaction of the radiation field with the inho-
mogeneous extinction field: when 3D radiative effects
are important, then optical thickness is not a meaningful
parameter. An additional implication is that any quan-
tities derived from the optical thickness (or the observed
radiation) will be subject to the same resolution re-
quirements.

Assuming we are working at an appropriate scale, L,
then t9 can be interpreted as the mean optical thickness
of a spatially variable medium computed on a radiative
basis, for example, as an albedo-preserving radiative
mean value. Therefore, ep is a direct measure of the
extent to which the variability of the particle density
distribution reduces the effective optical thickness, and
hence the spherical albedo, of a cloudy scene relative
to the homogeneous situation. Note the formulation of
Cairns et al. (2000) makes no assumptions about the
shape of the cloud particle density distribution, so that,
although the relationship between ep and the particle
density distribution depends on the shape of distribution,
using ep directly to correct the radiative transfer for
inhomogeneities in the medium is completely general
(cf. Oreopoulos and Davies 1998b).

c. Physical domain of validity

Since the magnitude of cloud variations is scale-de-
pendent, we must decide what range of spatial scales to
include in determining the radiative fluxes. The negative
slope of the power spectrum of cloud spatial variations
means that the choice of the upper-scale limit deter-
mines the magnitude of any variability statistic; how-
ever, we also need sufficient sampling of the smaller
scales for an accurate statistical estimate. We also need
to make measurements of the radiances at scales large
enough that the 3D effects do not prevent a meaningful
measure of cloud optical thickness. Thus there are two
separate issues: the best scales for retrieval of cloud

optical thickness and its variations from satellite radi-
ance measurements and the best scales at which to cal-
culate radiative fluxes with parameterized smaller-scale
variability.

1) LOWER-SCALE LIMITS

The smallest scale that needs to be considered is set
either by the smallest scale at which cloud properties
vary significantly or the smallest scale at which the
photons can respond to cloud variations, whichever is
larger. Aircraft observations of cloud variations along
flight paths, although not systematically analyzed, sug-
gest that significant cloud property variations appear
only on scales greater than about 3–30 m (e.g., Lilly
and Petersen 1983; Korolev and Mazin 1993; Davis et
al. 1999; and references therein). This is consistent with
the scales of the turbulent motions in the planetary
boundary layer that exhibit dominant eddy sizes of 1–
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10 km and power spectrum slopes of 25/3 (cf. Lilly
1983). The implication is that the motions at scales
,100 m are typically at least 2 orders of magnitude
smaller than those at the dominant scale, that is, sub-
stantially less than 1 cm s21. Such very weak motions
cannot produce substantial gradients in atmospheric
temperature and humidity sufficient to produce varia-
tions in cloud particle properties (Jonas 1994).

Using the transparent approximation (e.g., Goody and
Yung 1989, pp. 53–54), it can be shown that the spatial
variations of the optical properties of clouds smaller
than the photon mean free path are averaged out by the
radiation field (Marshak et al. 1998b). Detailed Monte
Carlo calculations show that the mean free path for solar
wavelength photons in the earth’s cloudy atmosphere is
about 100 m and that the effective ‘‘coupling’’ scale
where the radiation field expresses variations in the op-
tical medium is about 300 m (Marshak et al. 1995; Davis
et al. 1997). Although the coupling scale for more
strongly absorbed infrared photons is somewhat smaller,
variations of atmospheric temperature are governed by
the turbulent motions that occur at scales larger than
about 100 m (cf. Lilly 1983). As stated above, the for-
mulation of (1) embodies this radiative smoothing.
Thus, even if substantial cloud mass variations were to
occur at scales ,100–300 m, the radiation field would
not exhibit such scales because the pathlength required
for the photons to interact is larger. In other words, the
cloud is effectively homogeneous at the smallest scales
(cf. Marshak et al. 1995; Byrne et al. 1996).

Another crucial implication of this result is that one
cannot determine where the edge of a cloud is to a
precision better than about 100–300 m using radiation
observations (cf. Rossow 1989); thus concern about
‘‘subpixel’’ cloud cover at scales smaller than this is
misplaced.

2) THE SAMPLING SCALE, L

Much recent research (e.g., Barker and Liu 1995;
Barker et al. 1996; Chambers et al. 1997a) has involved
estimating the magnitude of optical thickness variability
by analysis of very high spatial resolution satellite ra-
diance data (e.g., 30-m LANDSAT data), where the re-
trieval procedure assumes each 30-m pixel is ‘‘plane
parallel’’ and independent of its neighbors. From a con-
sideration of Fig. 1, it is evident that the condition for
the ‘‘independent pixel approximation’’ (IPA) to be sat-
isfied exactly is absolute homogeneity (Fig. 1a), which
might be true at 30-m scale; however, the lateral trans-
port of photons at this scale, which is smaller than the
mean free path, is just as important as the vertical trans-
port (i.e., the radiation field is fully 3D). Thus, even
though IPA has been shown to provide a good estimate
of the spatially averaged fluxes through a variable me-
dium, the detailed calculations of Marshak et al. (1995,
1998b) show that the neighboring pixels at scales &300
m cannot be considered independent in a radiative sense

and that use of optical thickness distributions derived
from radiance analyses with IPA at such small scales
actually overestimates the radiative variability com-
pared with Monte Carlo calculations. The other possi-
bility illustrated in Fig. 1c is that IPA can be a satis-
factory approximation for a medium that is statistically
homogeneous, but only at the larger scale, L. In other
words, the conditions necessary for the validity of IPA
are equivalent to those needed for an unambiguous de-
termination of optical thickness. Marshak et al. (1995)
show that the optical thickness retrievals are better when
done at a scale of several kilometers (about 10 times
the coupling scale) where the 3D effects are reduced
and the lateral photon exchanges begin to cancel out.
Barker (1995) shows empirically that a better corre-
spondence between cloud albedo and optical thickness
appears only at larger scales. Oreopoulos and Davies
(1998b) also suggest that the small-scale effects are re-
duced at scales of several kilometers because subpixel
cloud cover reduces the mean optical thickness; but, as
discussed above, it is not obvious that cloud cover has
much meaning at scales smaller than the coupling scale.
Their results suggest instead that the retrieved optical
thicknesses represent the spatial distribution better if the
radiation is averaged over a few kilometers scale and
they show that the magnitude of the remaining 3D ef-
fects at 5 km is no more than about 1%. Observed power
spectra of radiances already demonstrate that the mag-
nitude of the contributions from scales smaller than a
few kilometers are negligible (Chambers et al. 1997b).

As we have noted above, optical thickness cannot be
meaningfully defined from radiance measurements at
scales where the 3D effects dominate. Moreover, any
study that uses data from LANDSAT or any instruments
on polar-orbiting satellites, also suffers from the problem
that the coupling of time- and space scales cannot be
observed since all one has is a snapshot of the spatial
structure. Use of such snapshots may distort our under-
standing of the dynamical effects of small-scale cloud
variability (we discuss this point more in section 6).

3) CLOUD OPTICAL THICKNESS VARIABILITY AND

CLOUD COVER

The physical limit on optical thickness calculations
should propagate through the analysis consistently, that
is, those derived quantities that depend on optical thick-
ness are also subject to the same spatial-scale limitations
(cf. Di Girolamo and Davies 1997). In particular, the
concept of ‘‘subpixel cloud fraction,’’ invoked in some
studies (e.g., Loeb and Davies 1997; Loeb and Coakley
1998), is probably moot. Very small-scale cloud fraction
effects certainly exist at the scales where the radiative
field is 3D (Korolev and Mazin 1993; Kobayashi et al.
1999, 2000); however, if the radiation is essentially av-
eraging over the smaller scales, the result may simply
be that the radiation does not ‘‘see small holes’’ in the
droplet density distribution, even if they are present (cf.
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FIG. 2. Geometry for calculating the contribution of each element
of the earth’s surface area to the upwelling flux observed at height,
h, above the surface, where R is the radius of the earth, r is the radius
of an annular surface region at central angle, w, width, Dw, and
distance, d, from the observation point. The angle, u, is the viewing
zenith angle at the center of the annular region.

Byrne et al. 1996; Marshak et al. 1998b). In other words,
variations of optical thickness, including zero values,
may not be important at scales &300 m. Barker and
Wielicki (1997) show this also true at thermal infrared
wavelengths. Detailed analysis of high-resolution (30
m) observations of the quintessential case, marine
boundary layer clouds, by Wielicki and Parker (1992)
and Chambers et al. (1997b) shows that, in fact, most
of the radiance variations observed at few-kilometer
scales is caused by variations of cloud optical thickness,
not cloud cover, and that this becomes even more pro-
nounced when the cloud cover falls below 100%. In
fact, Wielicki and Parker (1992) show that cloud cover
fraction does not vary with resolution over a range from
30 m to about 1–2 km. Thus, the cloud fraction defined
by radiative measurements should, like the optical thick-
ness, only be determined at scales at least 10 times larger
than the photon coupling scale.

4) UPPER-SCALE LIMITS

One way to set the upper-scale limit is to determine
the size of the area that contributes significantly to the
flux at a particular point. Figure 2 illustrates the ge-
ometry for determining the contribution of each element
of area as a function of the height above the radiating
surface. We can easily account for the change of pro-
jected area with viewing zenith angle, u, but neglect the
more complicated treatment of the variation of radiation
with altitude since the magnitude of the radiation gen-
erally decreases with height (especially for longwave
fluxes). We also neglect attenuation of radiation coming
from the surface, which increases as the pathlength, d,
increases toward the edge of the viewed region. All of

these simplifications mean that our estimate of the area
contributing to the flux is a slight underestimate. The
quantitative answer then depends on what height we
choose and what fraction of the total flux we consider
sufficient. About 99% of the total atmospheric mass and,
therefore most of the radiation, lies below a height of
about 30 km. Radiative heating at higher levels would
have contributions from a larger area, whereas radiative
heating at lower levels and at the surface looking upward
involve smaller contributing areas. For an upwelling
flux at a height of 30 km, about two-thirds of the total
comes from an area with a radius of about 200 km.
Thus, the radiative fluxes at a particular location can be
considered independent of the neighboring conditions
at scales of about 300–500 km.

Another argument for selecting the ‘‘best’’ scale for
treating the radiation using the scheme proposed here
to account for smaller-scale variations comes from the
fact that the representation of the cloud variability is
inherently statistical. Consequently, the parameter used
to represent the cloud variability will not be accurate
when applied to too small a sample population. Given
that the optical thickness and cloud cover are best de-
fined from measurements at scales ø1–3 km and that
the radiation efficiently couples to the atmospheric mo-
tions only at scales larger than the smaller turbulent
motions (i.e., 1–10 km), an appropriate sample of var-
iations at these scales would be obtained for domain
sizes of at least 100–300 km in size. Marshak et al.
(1998b) and Barker et al. (1999) reach a similar con-
clusion by showing that specific 3D geometric effects
appear in the radiance fields at scales ,10 km but that
average fluxes are well-represented at scales of 100 km
using a statistical representation of the optical thickness
variations. Lenschow and Stankov (1986) have directly
evaluated the scales necessary to estimate cloud vari-
ability accurately from long aircraft transects (see Astin
and Di Girolamo 1999 for a theoretical discussion).
They find that variances are determined within 10% only
when measurements are collected over transect lengths
10–100 times the boundary layer depth (roughly the
dominant horizontal eddy size as well). This implies
that the statistics of cloud variations are meaningfully
represented only at scales ;10–100 km. For conve-
nience, then, we will use the ISCCP grid resolution,
about 280 km, as the upper-scale limit.

d. Formulation of e for satellite data

The generality of the correction in (3) led us to for-
mulate a version of ep appropriate for larger-scale, re-
motely sensed cloud fields, where the integration of ex-
tinction cross section into optical thickness is statisti-
cally valid. Interpretation of the correction parameter,
e, in terms of correlation length scales and the moments
of the cloud particle density distribution is no longer
completely appropriate as a large-scale, derived statistic
since it would depend explicitly on the variability that
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exists between the scale of individual pixels and the size
of the domain over which the statistics are accumulated.
In this respect, e is only an analog to the microphysical
parameter, ep; however, e is the statistical generalization
of ep that can actually be determined from observations
(cf. Cahalan 1994b; Oreopoulos and Davies 1998b). The
validity of e will depend directly on the accuracy of
retrieving optical thicknesses from the pixel-level ra-
diance measurements using IPA, that is, assuming that
the net lateral transport of photons between pixels is
zero, and on obtaining a sufficient sample of the cloud
variability present. From Fig. 1c and the discussion that
followed, we consider radiances averaged over the scale,
L ø 5 km, the same scale at which the determination
of optical thickness is unambiguous, and collect a sam-
ple population over a scale of 280 km.

For clarity in the following discussion, we define
three different first moments of a discrete, normalized
optical thickness distribution, p(t i):

Linear mean:

t 5 p(t )t , (6)O i i

Radiative mean:
21 21t̂ 5 R p(t )R(t ) 5 R {R(t )}, (7)5 6O i i i

Logarithmic mean:

t̃ 5 exp p(t ) lnt 5 exp{lnt }, (8)5 6O i i i

where R is the radiative transfer operator that determines
a radiative flux from the optical thickness. These av-
erages are calculated for all nonzero values of optical
thickness (cloudy pixels only). The linear mean optical
thickness, , is proportional to (and reported by ISCCPt
as) cloud water path, which may be predicted in a model
cloud physics subroutine. This value is also often re-
ferred to as the plane-parallel or ‘‘homogeneous’’ op-
tical thickness. The radiative mean, , reported byt̂
ISCCP as the ‘‘mean’’ optical thickness, is calculated
with weights that are linear in spherical albedo, so that
it represents the (lower) optical thickness of a homo-
geneous cloud that has the same albedo as the actual
inhomogeneous cloud with . The logarithmic mean,t
, is roughly equivalent to the radiative mean and ist̃

used in an appendix to examine gamma-distribution-
based parameterizations of the effects of cloud inho-
mogeneity. The t i values are obtained for individual
satellite pixels (in the ISCCP DX dataset, these represent
areas about 5 km in size, sampled at intervals of about
30 km). In the ISCCP gridded datasets, the linear and
radiative mean values are computed and reported for all
cloudy pixels in an area of about (280 km)2 every 3 h
(D1 data) or every month (D2 data). For some of the
results shown later, the three mean values are computed
directly from the DX data over a range of time- and
space scales with variable map grid size.

The radiative mean optical thickness in (7) is taken
to correspond to t9 defined in (3) since it is, by con-

struction, the optical thickness of the homogeneous
cloud that has the same albedo as the inhomogeneous
cloud field. For satellite data, if we assume that the linear
and radiative means can be obtained from (6) and (7),
then we can define a variability statistic of the inho-
mogeneous cloud field in analogy with (3) as

t̂
e 5 1 2 . (9)

t

Thus, e serves directly as the descriptor of the radiative
variability of an arbitrary, remotely sensed optical thick-
ness distribution. For a homogeneous distribution, e 5
0; as the variability and its radiative effect increase, then
e increases toward 1. Note that e does not depend on
the shape of the optical thickness distribution since it
can be determined directly from the observed t values.
As discussed above and shown in the next section, e
varies with the range of time- and space scales included
to produce the distribution. The correction to the mean
optical thickness, needed to account for cloud inho-
mogeneity, is then given by (cf. Cairns et al. 2000)

t̂ 5 (1 2 e)t . (10)

Our statistic, e, is, in fact, defined in the same manner
as the reduction factor, x0, in Eq. (7) of Oreopoulos and
Davies (1998b), such that e 5 1 2 x0. Their reduction
factor is an extension of the effective thickness approx-
imation (ETA) of Cahalan et al. (1994b), namely,

5 log[x( )], which in the notation used here islogt ti

equivalent to x 5 / . In portions of the optical thick-t̃ t
ness–albedo relation, where the radiative weighting is
nearly logarithmic (the lower range of optical thickness
encompassing most of the clouds), x0 and x will be very
similar. Larger deviations between these two quantities
are found for distributions with very high variances, i.e.,
very ‘‘wide’’ distributions usually involving a few very
thick (e.g., convective) clouds mixed with very thin
clouds (i.e., cirrus) as is common in the Tropics. For
such distributions and will diverge.t̃ t̂

It is encouraging to see that the parameter, e, has
arisen independently, from the present extension of a
self-consistent, generic correction to radiative transfer
through inhomogeneous media and from a realization
that a proper quantification of variability should be de-
rived from its actual impact on the physical world in
Oreopoulos and Davies (1998b). In the latter work, the
variation of x and x0 with region size was only briefly
discussed. Here we take e as the fundamental variability
statistic and examine its behavior as a function of time-
and space scale and produce a climatology of its value
from the ISCCP dataset.

To make connection with other parameterizations of
cloud variability effects on radiative fluxes (e.g., Barker
1992, 1996a; Cahalan et al. 1994b; Barker and Wielicki
1997; Oreopoulos and Davies 1998a,b; Barker et al.
1999), we have also tested methods for determining
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gamma function fits to the observed distributions of
cloud optical thickness (appendix).

e. Evaluation of homogeneous biases with an
extension to infrared wavelengths

The primary modeling problem is to relate cloud prop-
erties, observed or predicted by the cloud physics sub-
routine in a GCM, to the radiative fluxes. The most direct
method is to use the cloud water content, expressed in
terms of particle number density, size, shape, and phase,
together with its vertical variation and the physical thick-
ness of the cloud layer, to determine the optical thickness,
single-scattering albedo, and asymmetry parameter of the
cloud. The variability correction factor, e, can then be
used in the scheme proposed by Cairns et al. (2000) to
rescale these optical parameters (see section 5). Another
approach is to use this information to determine the re-
flectivity (albedo), transmissivity, and absorptivity/emis-
sivity of the cloud by some direct relationship with water
content, so we also present the inhomogeneity corrections
for albedo and emissivity.

For a cloudy scene, the plane-parallel, homogeneous
albedo bias can be calculated from

A 2A5R{t}2R{t̂}5R{t}2R{(12e)t},pp (11)

where App is the plane-parallel cloud albedo, A is the
true albedo for an inhomogeneous cloud, and R is the
function relating optical thickness to albedo. Since ist
related to layer mean water content, R could be a func-
tion that relates water content directly to cloud albedo
(e.g., Stephens 1978). It is apparent from (11) that the
bias is well-represented by the specification of and e.t

We show in the appendix that this is a more stable
and appropriate characterization of the effects of small-
scale cloud variability on the radiation than other com-
monly proposed measures that use a second moment of
the optical thickness distribution, for example, st, sln(t) ,
(st/ ), etc. Our statistic is derived from two differentt
first moments of the distribution and is therefore more
robust in situations with limited sample population.
Moreover for the highly skewed and/or multimodal dis-
tribution shapes that are common for cloud optical thick-
ness, it is not clear how quickly the second moment
converges and how representative it is in such situations
(Lenschow and Stankov 1986 and Seze and Rossow
1991a both show from different datasets that the first
moment of the distributions converges much more rap-
idly than the second moment). Using higher-order mo-
ments of the distribution is particularly problematic for
scenes with mixtures of optically thin and optically thick
clouds (i.e., cirrus and convection mixtures). Since the
radiative effect of changing distributions of optical
thickness directly underlies the definition of e, it suffers
less error in situations where a few optically thick clouds
may dominate the second moment or when low mean
optical thickness may cause high values of the relative
dispersion, (st/ ), as we show in the next section. Int

either case, a large second-moment estimate of the var-
iability may not actually accompany a large absolute
bias in albedo of the homogeneous estimate.

The parameterization of radiative variability effects
can be extended to the longwave (IR) regime (cf. Barker
and Wielicki 1997) by defining an analogous statistic:

t̂IRe 5 1 2 , (12)IR t IR

where the effective infrared optical thickness, IR, ist̂
determined from the observed distribution of optical
thicknesses, p(t i), as before and therefore is valid for
the same range of time- and space scales. The emissivity,
E, of the discrete distribution is then represented by

E 5 1 2 [p(t ) exp(2bt )] 5 1 2 exp(2bt )O i i i

5 1 2 exp(2t̂ ), (13)IR

where b is a coefficient that relates visible optical thick-
ness to infrared optical thickness as a function of cloud
particle phase and the radiatively weighted optical thick-
ness, IR, is defined by the last equality. The plane-t̂
parallel, homogeneous emissivity, Epp, is given by re-
placing IR by IR in the last part of (13). Thus, thet̂ t
emissivity bias is given by

E 2 E 5 2exp(2t ) 1 exp[2(1 2 e )t ].pp IR IR IR (14)

Although e is a direct measure of the homogeneous
albedo bias, large values of e are not always indicative
of large values of eIR and a large emissivity bias. For
optically thick clouds, the emissivity is essentially unity
even if the optical thickness is varying a lot. This means
that the effects of spatial variations of cloud optical
thickness on the shortwave and longwave radiative flux-
es will differ with cloud type.

In section 3b, we show that a simple empirical re-
lationship between e and eIR can be derived from the
pixel-level cloud data. This analysis defines an approx-
imate function:

2 2e9 5 1 2 x 1 Ïr 2 (x 2 e) (15)IR

1
2x 5 (1 1 Ï2r 2 1 ) (16)

2

and r 5 1 1 3.65/t is the radius of a circle that passes
through the points (0, 0) and (1, 1) and that fits the
curvature of the relationship (see Fig. 9). We discuss
this relationship further in section 3b.

f. Summary

The refined conceptual model we are proposing aug-
ments the ‘‘large-scale’’ cloud parameters needed for
describing the radiative fluxes (cloud cover, optical
thickness, effective particle size, and temperature) by
adding a measure of cloud optical thickness variability
at ‘‘smaller scales’’ as another optical parameter (cf.
Stephens 1988a,b; Tiedtke 1996). Small-scale cloud-top
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temperature variability should also be added (cf. Stu-
benrauch et al. 1999). We consider these parameters to
be large-scale in the sense that they can be varied ex-
plicitly to represent the synoptic variations of the ra-
diative properties of the atmosphere (i.e., cloud types)
at all other scales larger than that of the model map
grid. Cloud cover fraction has been used as a linear
mixing parameter in radiative models to represent small-
er-scale variability as a linear mix of the radiation for
clear and overcast conditions (cf. Byrne et al. 1996).
Our refinement amounts to expanding the representation
beyond cloud cover to include variability within the
cloud. This is the first-order approximation for small-
scale variation effects (cf. Zuev and Titov 1995; Barker
et al. 1999; Kobayashi et al. 2000); but there are still
weaker effects that depend explicitly on the size distri-
bution of the cloud elements that are not accounted for
by our parameterization.

3. Mesoscale cloud variability

The discussion in the previous section suggests mak-
ing measurements of cloud optical thickness at scales
of a few kilometers, where statistical homogeneity can
be assumed, and sampling the variability over scales of
several hundred kilometers for radiative flux calcula-
tions. The ISCCP dataset reports optical thickness val-
ues for individual satellite pixels, about 5 km in size
(averaged over all satellites) that have been sampled to
spatial intervals of about 30 km. Although this sample
is a little sparse, Seze and Rossow (1991b) showed that
the variability statistics are equivalent to the original
dataset if collected over time periods of at least 10 days
for a region size of 280 km. Thus, the ISCCP dataset
can be used to obtain a climatology of cloud variability
at scales .5 km, which accounts for most of the vari-
ability (cf. Chambers et al. 1997b). The ISCCP gridded
(D1) dataset includes values of both the linear and ra-
diative mean optical thickness, from which we can cal-
culate e and eIR, as well as spatial standard deviations
(Rossow et al. 1996). To show that the summary sta-
tistics for 280-km regions can accurately represent the
radiative effects of cloud spatial variability, we exam-
ined 16 different climate regimes in detail (Fig. 3) using
the ISCCP DX data for July 1992. We use the actual
distributions of optical thickness and emissivity to de-
termine the variation statistics and to calculate the av-
erage fluxes directly (assuming IPA) for comparison
with the gridbox-average calculations. In the appendix,
we compare alternative methods for representing the
variability in more detail.

a. Cloud variation statistics

Figure 4 summarizes the pixel-level distributions of
cloud optical thickness in the 16 areas, aggregated over
a month. Some distributions, for example, those dom-

inated by marine boundary layer clouds (Fig. 4: regions
2072, 2446, 2690, 4647, and 4940), are relatively nar-
row, exhibiting a shape similar to a gamma function and
indicating little spatial or temporal variation of cloud
optical thickness. Some distributions, for example, those
for tropical regions with active deep convection (Fig.
4: regions 1855, 3019, 3358, 4186), are multimodal with
both very thin and very thick clouds present, usually at
the same time. Some distributions, for example, those
for tropical regions far from active convection (Fig. 4:
regions 1763 and 3272), are dominated by optically thin
clouds. Some distributions, for example, in midlatitude
oceanic storm tracks (Fig. 4: regions 717, 5677, and
5909), exhibit a very wide range of optical thickness
values. Midlatitude land areas (Fig. 4: regions 5387 and
6100) also have a very wide range of values but with
more cirrus. This very large variety of cloud optical
thickness distribution shapes presents a challenge to
finding a simple representation of variability that is both
general and accurate enough for calculating radiative
fluxes.

Figure 5 translates the spatial variability of t into
distributions of e and eIR and their respective average
cloud albedo and emissivity biases, collected into three
groups of small, moderate, and large variability (groups
A, B, and C, respectively). Table 1 cross-references the
region numbers in Figs. 3 and 4 with these groups.
Clouds that exhibit relatively narrow optical thickness
distributions also exhibit a narrow range of e and eIR,
for example, the marine boundary layer clouds (group
A). Note that the Northern Hemisphere regimes exhibit
more variability because, at their higher-latitude loca-
tion, midlatitude disturbances occasionally enter the re-
gion bringing in optically thicker clouds (cf. Rozendaal
and Rossow 2001, manuscript submitted to J. Atmos.
Sci.). Some of the more complex distributions translate
into a simple, broad distribution of e but a more complex
distribution of eIR, for example, mixtures of cirrus, mid-
level clouds, and boundary layer clouds that occur in
‘‘suppressed’’ convective or oceanic storm track re-
gimes (group B). Some groups show a very wide range
of both e and eIR, for example, active convection, es-
pecially over land, and other midlatitude land areas
(group C). Convection in the South Pacific convergence
zone exhibits a smoother distribution, dominated by
moderate optical thicknesses, than other convective re-
gions. The oceanic storm track clouds tend to exhibit
less overall spatial variability that the clouds over mid-
latitude land areas; the latter exhibit much more frequent
occurrence of isolated cirrus clouds associated with
mountain ranges (Randall et al. 1996; Jin et al. 1996).

The distributions shown in Fig. 4 are produced both
by spatial and temporal variations of the clouds, whereas
the distributions in Fig. 5 represent the time variations
of a spatial variation statistic. The effect we wish to
focus on is the radiative effects of spatial variations of
the clouds. However, some studies of the radiative ef-
fects of small-scale cloud variability have used time
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FIG. 3. Locations of special regions in the viewing area of each geostationary satellite that were selected for
detailed study.

records of cloud variation taken at a point as an estimate
of the cloud spatial variations (e.g., Cahalan et al.
1994b). Such an approach has to used carefully to be
sure that the proper range of scales is included. Figure
6 shows the values of e for six of the special study
regions calculated from histograms of pixels aggregated
over different combinations of time- and space scales.
Points on the x axis represent e values produced solely
by spatial variations at all scales below the marked value
and points on the y axis represent e values produced
solely by time variations at all scales below the marked
value. Points in the interior of the figure are produced
by both space and time variations at all scales smaller
than the coordinate values of the point. This figure
shows very clearly that the magnitude of the cloud var-
iability statistic depends on the range of scales included:
the larger the upper-scale limit, the larger the variability.
Moreover, the figure shows that the contribution from
time variations generally grows more rapidly with scale

than the contribution from spatial variations for most
cloud regimes except for upper-level clouds over mid-
latitude oceans. The lower-left panel in Fig. 6 shows the
results for the low-level clouds over ocean that have
been used for almost all other studies of this problem:
point-measurement records longer than about 10 days
are equivalent to including spatial scales .300 km,
which would overestimate the effects of cloud vari-
ability for typical model resolutions (Pincus et al. 1999
make this same point). In general (Fig. 6), the purely
spatial contributions to the cloud variations are much
larger for upper-level clouds than lower-level clouds
(left), for clouds over land than over ocean (center), and
for clouds in the Tropics than for clouds at midlatitudes
(right). In the remainder of the paper, we examine cloud
variations contributed solely by spatial scales &300 km.

Based on the pixel-level data from these 16 regions,
we construct the histogram-average cloud albedos and
emissivities, which are the ‘‘true’’ values (based on
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FIG. 4. Distributions of visible optical thickness for each of the special study regions (Fig. 3)
aggregated over the month of Jul 1992.

IPA), as well as the area-averaged quantities (at 280-
km scale) at each time. Figure 7 shows the average cloud
albedos and emissivities as functions of the linear mean
optical thickness, , with the homogeneous relation in-t
dicated by the dashed lines: significant deviations from
the plane-parallel (i.e., homogeneous) relationships are
apparent. Figures 8 and 9 show how the plane-parallel
albedo and emissivity biases are related to three vari-
ability statistics: the optical thickness standard devia-
tion, st, the relative variance, V 5 (st/ )2, and e (alsot

see appendix). Although there is a general relationship
between the first two statistics and the albedo error, e
provides a much more precise relationship (lower panel
in Fig. 8). Likewise eIR provides an improved relation-
ship with the emissivity error, although not as good as
for albedo error (Fig. 9, bottom).

Figure 10 examines the additional effect on longwave
fluxes produced by small-scale variations of cloud-top
temperature (cf. Stubenrauch et al. 1999). The differ-
ence between the blackbody temperature representing
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FIG. 5. Distributions of e and eIR values for the special study regions (Fig. 3) aggregated over the month of Jul
1992 and collected into three groups according to their magnitude (Table 1). These statistics are calculated for areas
of about (280 km)2.

the area-averaged longwave flux and the radiatively
weighted, area-averaged temperature reported in the
ISCCP datasets exhibits very small errors for low-level
and midlevel clouds; even for high-level clouds (Fig.
10, bottom), the averaging bias is ,1 K, except for a
very few cases where very cold and very warm clouds
are mixed together. Even in these extreme cases, the
flux error is only about 2%–3%. Flux errors would be

larger if the linearly averaged cloud temperature were
used.

b. Relationship of shortwave and longwave
inhomogeneity parameters

In section 2e, we defined a quantity, eIR, to estimate
the emissivity of an inhomogeneous cloud from the
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FIG. 6. Increase of e with increasing time (logarithm days) and space (logarithm km) scales for regions selected to represent general cloud-
type regimes: (top left) mid- and high-level clouds (bottom left), low-level clouds, (top center) midlatitude low-level clouds over land,
(bottom center) midlatitude clouds over ocean, (top right) midlatitude mid- and high-level clouds over ocean, and (bottom right) tropical
mid- and high-level clouds over ocean. Values on the y axis represent time variation contributions alone; values on the x axis represent space
variation contributions alone. Values in the interior represent combinations of space and time variation contributions. Box numbers refer to
Fig. 3 and Table 1.

TABLE 1. Cloudy regions grouped by the magnitude of their small-scale variations.

Group A Group B Group C

Marine boundary layer
Active tropical convection
Tropical cirrus
Ocean storm tracks
Midlatitude land

2072, 2446, 2690
—
—
—
—

4647, 4940
1855
1763

717, 5677, 5909
—

—
3019, 3358, 4186

3272
—

5387, 6100

mean properties and presented an empirical expression
[given by Eqs. (15) and (16)] to determine eIR from t
and e. This expression was developed using the pixel-
level data from the 16 regions. Figure 11 shows the
scatterplot of eIR against e for every region over the
whole month, where deviations from the straight line
representing equality increase as the average optical
thickness increases. The curves illustrate the empirical
fit used for Eqs. (15) and (16). Figure 12a compares the
calculated value, against the true value, eIR. The fite9IR
is generally very good, but there is increasing scatter
and a slight overestimate for eIR . 0.8. Figure 5 shows
that such large values of eIR are extremely rare, occurring
mostly in the active deep convection areas. Figure 12b
shows that, despite the scatter exhibited in Figs. 9 (bot-

tom) and 12a, the emissivities calculated with these re-
lations generally agree well with the actual emissivities;
the small population of underestimates are produced in
situations where the optical thickness distribution is
multimodal because there are mixtures of cirrus and
deep convective clouds.

c. Relationship of inhomogeneity parameters to other
cloud properties

We use the groupings, defined by the variability ef-
fects on cloud albedo and emissivity (Fig. 5 and Table
1) to look for correlations with other cloud properties
that have also indicated different climate regimes (Ros-
sow and Schiffer 1991; Rossow et al. 1993; Rossow and
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FIG. 7. (top) Cloud albedo and (bottom) emissivity as a function
of the linear area mean optical thickness, , in all the special studyt
regions: the dashed line represents the relationship for a homogeneous
plane-parallel cloud layer (two different lines are given for emissivity
depending on whether the cloud is liquid or ice).

Schiffer 1999). Figure 13 shows the variations of e and
eIR with . Note that eIR is generally larger than e, usuallyt
because a small admixture of optically thinner clouds
is always present with thicker clouds for which the emis-
sivity is ‘‘saturated’’ at unity. The low variability group
A (Fig. 13, top), mainly boundary layer clouds over
oceans, exhibits larger values of e and eIR only for in-
termediate optical thicknesses. Thus, the ISCCP cloud
categories actually divide low-level clouds into three
types: the small mean optical thickness ( # 3.6) typet̂
with small mean variability is called cumulus, the large
mean optical thickness ( . 22.6) type with small meant̂
variability is called stratus. The middle mean optical
thickness type with large mean variability is called stra-
tocumulus. Hahn et al. (2001) show that there is only
a weak correspondence on average between these op-
tical thickness categories and the classical morpholog-
ical cloud types; but the results in Fig. 13 suggest that
the intermediate values of are also systematically as-t̂
sociated with larger spatial variability at scales ,300
km. Group B cases (Fig. 13, center) are mixtures of
clouds at all levels, found mostly in midlatitude storm
track regions (and the Northern Hemisphere marine stra-
tus regions that are occasionally influenced by midlat-
itude disturbances), that exhibit a general tendency for

larger e and eIR as the average optical thickness increas-
es. The analyses of Lau and Crane (1995) and Tselioudis
et al. (2000) associate larger average optical thicknesses
with stormier conditions and precipitation: such cloud
systems produce a broad range of cloud properties.
Group C (Fig. 13, bottom), containing mostly the trop-
ical convective systems and the summertime midlatitude
continents, exhibits a similar general increase of e and
eIR with increasing optical thickness but with a larger
range of values and much more scatter. This feature
seems associated with even more extreme mixtures of
clouds with very low optical thicknesses (cirrus) and
very high optical thicknesses (deep convective clouds).

Figure 14 shows that there is no particular relation-
ship between cloud fractional cover and the values of
e and eIR. This suggests that variations of cloud cover
fraction have little to do with the magnitude of the cloud
optical thickness spatial variations, which seem to be
more indicative of cloud type (i.e., meteorology). To-
gether with the weak relationship to , these results alsot
confirm that e and eIR provide independent information
about clouds.

4. Climatology of cloud optical parameter
variability

a. Cloud optical thickness variability

Figure 15 shows maps of the 5-yr mean (1986–90 to
avoid Pinatubo effects) values of e for a region size of
280 km calculated from the ISCCP D1 dataset. Values
are calculated separately for low-, mid-, and high-level
clouds (defined by cloud-top pressures $680 mb, be-
tween 440 and 680 mb, and ,440 mb) and for all clouds
together. Presented with each map are normalized his-
tograms of the mean e values for land and ocean with
the global mean value indicated (the features in the In-
dian Ocean sector are artifacts associated with large
differences of satellite-viewing zenith angle between
different satellite-coverage regions caused by a weak
zenith angle dependence in the ISCCP cloud optical
thickness distributions; cf. Rossow and Garder 1993).
Overall, these results show that high- and midlevel
clouds are more variable over land and low-level clouds
are more variable over oceans. Consequently, clouds are
slightly more variable over land than over ocean overall
because of the preponderance of high- and midlevel
clouds there. The geographic patterns of e are fairly
constant with season (hence only annual mean maps are
shown), except for the well-known seasonal shifts of
location of the inter tropical convergence zone (ITCZ)
and Northern Hemisphere storm tracks (Rossow et al.
1993). Results for all 12 months (5-yr means) are avail-
able at the ISCCP Web site (http://isccp.giss.nasa.gov),
given in terms of e and eIR, as well as cloud-fraction-
weighted albedo and emissivity biases.

The geographic pattern of albedo bias produced by
treating clouds as spatially homogeneous, even when
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FIG. 8. Plane-parallel albedo bias plotted as function of (top) the
standard deviation of optical thicknesses, (center) the relative vari-
ance of optical thicknesses, and (bottom) the parameter e at a scale
of about 300 km for all special study areas.

FIG. 9. Plane-parallel emissivity bias plotted as function of (top)
the standard deviation of optical thicknesses, (center) the relative
variance of optical thicknesses, and (bottom) the parameter eIR at a
scale of about 300 km for all special study areas.

weighted by mean cloud cover fraction, generally re-
sembles the pattern of e in Fig. 15. Albedo errors are
generally ,0.10 for all clouds and ,0.05 for individual
cloud types. The largest errors occur where average
cloud cover fractions are large, marking the ITCZ and
midlatitude oceanic storm track regions.

For the individual cloud-height types, the land–ocean
histograms of e are fairly similar in shape, where larger
mean values are associated with the presence of rela-
tively small populations of clouds with very large values
of e (also large values of ), associated with precipi-t
tation. When all clouds are considered together, the dis-
tributions over land are bimodal: most of the small e
values are found over North Africa. The largest contri-
bution to e and the mean albedo bias in the ITCZ comes
from the high-level clouds, whereas the mid- and low-
level cloud contributions predominate in the midlatitude
oceanic storm track regions.

For high-level clouds (Fig. 15, top), e and the mean
albedo bias form a fairly simple large-scale pattern com-
posed of the ITCZ feature, the subtropical jet regions,
the generation portion of the midlatitude oceanic storm
tracks, and clouds over major mountain ranges. The
most homogeneous high-level clouds are found over
northern Africa, the Middle East, and the eastern mar-
gins of the ocean basins in the Southern Hemisphere

where the clouds tend to be optically very thin (i.e.,
cirrus) with small average cloud amounts (which ISCCP
probably underestimates; cf. Liao et al. 1995; Jin et al.
1996). Midlevel clouds (Fig. 15, center) show a pattern
of variability similar to high-level cloudiness, although
there are significantly more large e values at higher
latitudes. The e values in the polar regions over snow-
and ice-covered surfaces are much less certain since the
accuracy of the ISCCP optical thickness retrievals under
these conditions is much lower (Rossow and Schiffer
1999). The area of largest e and albedo bias for midlevel
clouds occurs in the oceanic storm tracks and is shifted
downstream from the largest values for high-level
clouds. The variations of albedo bias for midlevel clouds
are generally smaller because of the smaller cloud frac-
tions.

Low-level clouds (Fig. 15, bottom) exhibit some in-
teresting, perhaps counterintuitive results. The global
mean value of e is about 11% larger over oceans than
over land, but the mean albedo bias is fully 65% larger
due to both a larger mean optical thickness and greater
fraction of cloud cover by low-level clouds over oceans.
The marine stratus regimes, off the subtropical west
coasts of the continents, generally exhibit intermediate
values of e and albedo bias, which contradicts the com-
monly held view that the thick stratus decks are the



572 VOLUME 15J O U R N A L O F C L I M A T E

FIG. 10. Difference between the average longwave flux, represented
by the average of the fourth power of the emission temperature, and
the average cloud-top temperature reported in ISCCP datasets as func-
tion of the area standard deviation of cloud-top temperatures, sT,
(top) for all clouds and (bottom) for high-level clouds only.

FIG. 11. Observed relationship of eIR and e for all special study
areas. Curves are for circles with different radii that are functions of
optical thickness that all pass through the points (0, 0) and (1, 1).

most homogeneous cloud type (as Cahalan 1989 also
noted). While these clouds are statistically uniform over
very large areas, they are the most variable low-level
cloud type. Conversely, trade cumulus, usually thought
to be highly inhomogeneous, are, in fact, fairly ho-
mogeneous because their mean optical thicknesses are
generally very small. The largest e and albedo bias for
low-level clouds occurs in the midlatitude oceanic storm
tracks and is shifted into the decay portion of the tracks
in the eastern oceanic basins. In general, e for low-level
clouds appears to vary with surface type and does not
exhibit the large-scale geographic features associated
with the large-scale atmospheric circulation that show
up in the distribution of mid- and high-level cloud e
values.

Figure 16 shows the mean seasonal variations of e
for high-, mid-, low-level, and all clouds over ocean
and land, averaged over the globe and in several climate
zones: the Tropics (6158), midlatitudes (6308–608), and
polar regions (6608–908). Monthly mean values were
seasonally phase-averaged for the period 1986–90, for
example, values for January in the Northern Hemisphere
are averaged with values for July in the Southern Hemi-

sphere. The global mean e values for high- and midlevel
clouds are well correlated in their seasonal variations;
they both exhibit a 12-month cycle that peaks in local
midsummer over land and in early autumn over oceans.
Over land, low-level clouds show a 6-month cycle with
e maxima in spring and autumn; over oceans there is a
12-month cycle with its maximum in winter. The dif-
ferent seasonal behavior of low-level cloud variability
again suggests a difference in the underlying process
that produces the variability (a similar contrast arises
for the diurnal variations of clouds at different levels;
Cairns 1995), plausibly reflecting the differing roles of
the boundary layer turbulence and the large-scale at-
mospheric circulation. The variability of high-level
clouds in the Tropics is larger than at other latitudes,
whereas the variability of low-level clouds is largest in
the polar regions (but this may not be reliable). The
seasonal variations of high-level clouds are similar in
phase in tropical and midlatitudes over oceans, but the
polar clouds show a different seasonal phase with a
maximum in winter (this may be spurious since ISCCP
does not measure optical thicknesses in much of the
winter polar regions, so these results may be caused by
changing geographic coverage). Over land, the seasonal
cycle of high-level clouds has the same phase at all
latitudes. Low-level clouds also show similar seasonal
cycles at all latitudes, but with maxima in winter over
oceans and in spring and autumn over land.

Combining these results with variations of monthly
mean cloud cover (Rossow et al. 1993) and other cloud
properties (Rossow and Schiffer 1999), the classic cli-
mate regimes can be described by very different but
essentially constant values of cloud properties, now
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FIG. 12. (a) Estimated values, , vs the true values, eIR. The estimated values are calculated from an empirical relation with and e.9e tIR

(b) Estimated values of emissivity, E9, vs the true values, E. The estimated values are calculated from an empirical relation with .9eIR

FIG. 13. Distributions of e (closed circles) and eIR (open circles)
as functions of the linear mean optical thickness for the three groups
of special study regions (Table 1).

FIG. 14. Distributions of e (closed circles) and eIR (open circles)
as functions of cloud cover fraction for the three groups of special
study regions (Table 1).
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FIG. 15. Geographic distribution of the annual mean values of e, averaged over 1986–90, for high-, mid-, low-level,
and all clouds. Aggregate distributions separated by water and land are shown to the right of each panel with the
global mean values indicated.
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FIG. 16. Seasonal variations of e for high-, mid-, and low-level clouds averaged over the whole globe and over
three latitude zones (tropical 5 6158, midlat 5 630–608, high lat 5 660–908).

extended to include the characteristic mesoscale var-
iability of optical thickness. The convectively active
regions of the Tropics are characterized by extensive
and persistent cloud cover with high-level tops (lower-
level clouds are obscured in the satellite view), gen-
erally a mixture of optically very thin (cirrus), and very
thick clouds (convective), resulting in a relative low
mean optical thickness but very high optical thickness
variability. The variation of cloud-top temperatures in

these regions is also relatively high (cf. Fig. 17). The
subtropics are characterized by low-level clouds, with
much larger cloud cover, mean optical thickness, and
its variability in the eastern portions of the ocean basins
than in the western portions. Midlatitudes exhibit ex-
tensive and persistent cover by very optically thick and
variable clouds at all levels, especially over the oceans;
the Southern Hemisphere seems to exhibit less upper-
level clouds whereas the more frequent appearance of
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FIG. 17. Geographic distribution of annual mean values of the spatial standard deviation of cloud-top temperatures
(K) for high-, mid-, low-level clouds, and all clouds. Aggregate distributions separated by water and land are shown
to the right of each panel with the global mean values indicated.
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TABLE 2. Changes in global, daily mean, upwelling (↑) and down-
welling (↓), shortwave (SW) and longwave (LW) fluxes (W m22) at
the TOA and SRF produced by rescaling only the linear mean optical
thickness using e and by rescaling the other optical parameters using
e. Values are shown for overcast conditions and scaled by cloud cover
fraction (CF). Results are based on a test calculation using ISCCP
data for one particular day, 15 Jul 1986.

→ onlyt̄ t̂
o, g →v̄
90, g9v̄ Total

TOA-SW↑
CF (TOA2SW↑)
SRF-SW↓
CF (SRF-SW↓)

215
213
119
115

27
26
18
17

222
219
127
122

TOA-LW↑
CF (TOA-LW↑)
SRF-LW↓
CF (SRF-LW↓)

16
14
26
24

13
13
23
22

19
17
29
26

cirrus over land increases the average optical thickness
variability there. High latitudes also exhibit large cloud
cover at mid- and low-levels with large average optical
thicknesses, but the estimates of its variability are less
reliable.

b. Cloud emissivity and top temperature variability

The cloud emissivity variation parameter, eIR, is also
reported at the above Web site for use in radiation codes
that treat cloud effects in terms of albedo and emissivity
(as opposed to calculations of both shortwave and long-
wave fluxes using a spectrally consistent optical thick-
ness). This parameter represents only the variation of
the longwave fluxes that occurs because of the small-
scale variations of cloud optical thickness and does not
account for the larger effect produced by a small-scale
variations of cloud-top temperature (cf. Stubenrauch et
al. 1999). Since the cloud emissivity saturates at near-
unity for relatively small optical thicknesses (see Fig.
7), eIR is generally larger than e (see Fig. 11) because
a small admixture of low optical thicknesses produces
more emissivity variance than albedo variance. Nev-
ertheless, this larger variability in eIR translates into less
effect on the emissivity because of the saturation effect.
The close monotonic relationship between eIR and e
shown in Fig. 11 implies that the geographic patterns
of the two are very similar, and therefore, maps of eIR

are not shown. The ratio of the effective infrared and
solar wavelength optical thicknesses for inhomogeneous
clouds generally decreases from unity at small optical
thicknesses to about 0.2 at 5 100; however, the emis-t
sivity error made in assuming a homogeneous cloud is
larger than the albedo error only for & 15.t

The other factor contributing to variations of the
longwave fluxes is variability of the cloud-top tem-
perature (likewise for cloud-base effects on down-
welling fluxes to the surface): if the cloud-top tem-
perature is treated as homogeneous at scales &300 km
when it is variable, there will also be biases in the
calculated longwave fluxes (cf. Stubenrauch et al.
1999), especially if the average temperature is calcu-
lated linearly. Figure 17 illustrates the average spatial
standard deviation of cloud-top temperature, sT , from
the ISCCP dataset: the larger this quantity, the larger
the error in the calculated longwave flux obtained using
the linear-average cloud-top temperature. Figure 10
shows that the parameter reported in the ISCCP da-
tasets, which is a radiatively weighted-average cloud-
top temperature, represents the average longwave flux
quite accurately with only a small underestimate for
high clouds in cases of extreme variability, which oc-
curs occasionally in the Tropics.

5. Effects of cloud variability on the radiation
budget

To illustrate the radiative effects of small-scale (&300
km) cloud inhomogeneity, we calculate global short-

wave and longwave fluxes at the top of the atmosphere
(TOA) and surface (SRF) for one particular day (15
July 1986) with and without accounting for the vari-
ability. We use the ISCCP dataset that is the same test
case used by Zhang et al. (1995) to test parameter sen-
sitivities in their flux calculations, so that the relative
importance of cloud inhomogeneity can be judged
against other factors affecting the radiation budget (as
discussed in that paper). The radiative transfer model
used is essentially the same as they used. Table 2 sum-
marizes the global mean effects on the shortwave and
longwave fluxes of small-scale cloud inhomogeneity
separated into two contributions. The first and largest
contribution is the effect of using the radiative mean
optical thicknesses, , in the calculations instead of thet̂
linear mean, , where the radiative mean value can bet
determined from the linear mean and e using Eq. (10).
Note as reported by ISCCP the ‘‘average’’ optical thick-
ness is and the cloud water path is equivalent to .t̂ t
This larger effect (15–20 W m22) would occur in a
model only if the model produced the correct cloud
water path values and used their linearly averaged values
directly to determine cloud radiative effects. In fact,
most models already have some adjustment to their pa-
rameterization to reduce this effect. The second and
smaller contribution (almost 10 W m22) accounts ap-
proximately for the true 3D effects by rescaling the other
optical parameters, Ã0 and g, using e [Eqs. (1b) and
(1c) cf. Cairns et al. 2000]. The longwave effects shown
do not account for cloud-top temperature variability at
smaller scales. The effects on shortwave fluxes are larg-
er, about 20%–30% of the average flux, whereas the
longwave effects are only about 5% of the average flux.
Figure 18 (lower panel) shows the zonal mean changes
in the daily mean fluxes produced only by the second
part of the effect, assuming complete overcast condi-
tions. Note the concentration of the shortwave changes
in the ITCZ and midlatitude oceanic storm track zones
(similar changes in downwelling flux at the surface are
not shown), even though the largest total fluxes occur
near the North Pole (northern summer solar geometry).
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FIG. 18. Zonal, daily mean, (top) upwelling shortwave flux at the TOA with (solid line) and without (dashed line)
small-scale variations and (bottom) its change for overcast conditions produced by cloud spatial variations at scales
,300 km, both in W m22, calculated using the ISCCP data for 15 Jul 1986.

The changes in upwelling longwave fluxes at TOA are
concentrated in the ITCZ (Fig. 19, bottom); changes in
the downwelling longwave flux at the surface are rel-
atively uniform with latitude. These features are con-
sistent with the regional distributions of the values of
e and eIR.

Stubenrauch et al. (1999) found that the observed
relationship between shortwave and longwave fluxes
for high-level clouds followed a curve that was more
nearly linear than predicted by the theoretical rela-
tionship between optical thickness and emissivity.
They showed that this behavior was consistent with
the existence of mixtures of cloud-top temperature
within their 100-km scenes. We used a similar analysis
to test the contribution to this behavior from the small-
scale cloud optical thickness inhomogeneity effect and
found that it has much less effect on this relationship
than does the mixture of temperatures. This results
from the fact that the larger inhomogeneity effects oc-
cur at larger cloud optical thickness values, producing
noticeable changes in albedo but not in longwave emis-
sion because the emissivity has already reached unity.
The key point from both of these studies is that the

small-scale cloud variations alter the relationship be-
tween the shortwave and longwave flux effects in dif-
ferent ways for different types of clouds. Such cloud-
type dependence cannot be easily captured by simple
parameterizations that relate cloud water directly to
cloud albedo and emissivity.

6. Implications for modeling of cloud–radiative
interactions

Dynamical considerations mitigate the effect that
smaller spatial-scale atmospheric (cloud) variations
have on the overall transfer of energy to the atmosphere
by radiation because the coupling of radiation to the
cloud–atmosphere system also involves the timescale
over which significant radiative heating occurs. Since
the injection/loss of radiative energy into/from the at-
mosphere cannot occur on spatial scales smaller than
required to absorb shortwave/longwave photons, such
coupling must occur at spatial scales larger than a few
hundred meters. Since a major source of energy for the
atmosphere is convective (turbulent) transports from the
solar-heated surface, in both sensible and latent forms,
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FIG. 19. Zonal, daily mean, (top) upwelling longwave flux at the TOA with (solid line) and without (dashed line)
small-scale variations and (bottom) its change for overcast conditions produced by cloud spatial variations at scales
,300 km, both in W m22, calculated using the ISCCP data for 15 Jul 1986.

at spatial scales ranging from the depth of the planetary
boundary layer (;1–3 km) to the depth of the whole
troposphere (;10–15 km), the heating effect of these
motions requires aggregation of the convective vari-
ability over timescales of order 10 times the eddy over-
turning times, ;1–3 h. A similar aggregation scale for
radiative heating is also needed. On the other hand, since
atmospheric motions at the smallest scales are predom-
inantly three-dimensional (cf. Lilly 1983), turbulent en-
ergy cascade will efficiently dissipate any differential
radiative heating at scales of a few kilometers on time-
scales ;10 min, long before they could be transported
very far by the larger-scale motions. Likewise, the
smaller spatial-scale variations evolve rapidly in time,
averaging out their spatial contrasts over longer time
intervals. Thus, differential heating of cloud elements
by radiation at spatial scales smaller than a few kilo-
meters and timescales less than about an hour will have
much less influence on the aggregate heat flux across
the atmosphere than the heating contrasts at larger
scales. This suggests that very high-resolution dynam-
ical models (i.e., cloud-resolving models) may not need
to represent every particular detail of the variations of

the radiative heating field induced by the smaller-scale
cloud variations, which would require a 3D radiative
transfer code in any case; but rather need only capture
the variations of radiative heating at scales larger than
kilometers and hours. Modeling studies are needed to
verify this suggestion since most evaluations of 3D ef-
fects have used shortwave albedo or reflected radiances
as the criterion for validity rather than heating rates.

The usual evolution of the fidelity of GCM param-
eterizations involves three stages: first, some parameters
are specified (either constant or with ‘‘climatological’’
variations); second, these parameters are instead diag-
nosed from other prognostic variables; and third, these
parameters are made prognostic variables. If the above
suggestion about the coupling of radiation and dynamics
at the smallest scales is correct, then the main effect of
the mesoscale variability of clouds is to systematically
alter the relationship between the radiative fluxes and
mean atmospheric (cloud) properties. To capture this
effect, we are proposing augmenting the usual large-
scale cloud layer parameters. For a GCM that deter-
mines the gridbox (i.e., linear) mean cloud water content
and microphysical parameters, together with the vertical
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layer structure and the cloud cover fraction, the ho-
mogeneous optical thickness, single-scattering albedo,
and asymmetry parameter can be calculated. Then the
results reported here (and the datasets from the Web
site) can be used either to specify mesoscale cloud op-
tical thickness and top temperature variations as a func-
tion of cloud height, location, and month-of-year, or to
search for diagnostic relationships between the cloud
property variability and meteorological conditions, or
to verify a prognostic model of small-scale cloud var-
iability. The climatology of e (and/or eIR) can be used
to rescale the homogeneous cloud–radiative parameters
to account statistically for the effects of the smaller-
scale cloud variations. Take note of the two separate
effects discussed in relation to Table 2: if the GCM
parameterization produces the ‘‘correct’’ linear-average
optical thickness, then it must be rescaled along with
the other parameters to account for subgrid variability;
but if the parameterization already rescales the optical
thickness to obtain the correct mean albedo, then only
the rescaling of the other optical parameters is needed
to account for true 3D effects. It should also be em-
phasized that some GCMs may already generate optical
thickness variability that may be sufficient by prescrib-
ing optical thickness as a function of cloud type and
frequently calling the cloud physics subroutines, so care
should be taken in supplementing this explicit vari-
ability with the statistical representation discussed here.
The ISCCP dataset represents all of the variability at
scales ,300 km.

There are three additional considerations. First,
these values of e (and eIR ) were determined for spatial
scales &280 km (about 2.58 lat–lon at the equator)
and would not be the same for a different model res-
olution. Experiments with the 16 climate regimes
show that the values of e (and eIR ) scale approximately
as the area, so the reported values would need to be
decreased (increased) for models with resolution
higher (lower) than 280 km (since most models use
fixed lat–lon grids, the physical area represented
changes with latitude, so the e and eIR values need to
be rescaled with latitude). Second, specifying the val-
ues of e (and eIR ) as a fixed function of location and
season is probably not accurate unless the model in
question actually produces the same cloud-type mix-
tures in the same locations at the same times of year
as observed. A better approach is to use these results
to determine a cloud-type-dependent specification of
e (and eIR ). We have provided results for cloud types
defined by height categories; further refinements can
be performed using the ISCCP D1 or D2 datasets.
Note however, that if cloud types are defined addi-
tionally by optical thickness categories, then the mix-
ing of these types in a single grid cell can serve as
another way to represent subgrid cloud variability.

An alternative viewpoint is that the optical thick-
ness and e values provide summary statistics that can
be used to ensure that a model has the correct mean

albedo and liquid water path. Thus, rather than com-
paring histograms of optical thickness generated by
models with those measured by ISCCP, variability
predicted by models can be evaluated just by com-
paring with the two summary statistics, t and e (and/
or eIR ).

The third issue is that we are not able to address the
consequences of variations in cloud vertical structure
and how that interacts with the horizontal variations we
have been discussing. The results obtained from the
ISCCP dataset provide column-integral information, so
that upper-level clouds include, statistically, the effects
of the presence of lower-level clouds and their hori-
zontal variations. A study by Barker et al. (1999) ac-
tually suggests that the area mean radiative fluxes are
better represented by vertically uniform, independent
pixels representing the total horizontal variability than
by trying to account for vertical variations in each layer
and then using some layer overlap procedure. This result
may well depend on the method used to determine the
properties of overlapping cloud layers; but it is also
likely that two overlapping, adjacent cloud ‘‘layers’’
(actually one thicker cloud layer) are more likely to have
vertically correlated variations of water content so that
vertically uniform, but horizontally varying, pixels may
be a reasonable approximation. Two separated cloud
layers are unlikely to have correlated smaller-scale var-
iations, so that the horizontal variations of optical thick-
ness observed from above are likely to tend toward
statistical homogeneity for multiple cloud layers. Note,
however, that the magnitude of e (and eIR) from ISCCP
is generaly larger (not smaller) for high-level clouds
because they are much more likely to involve mixtures
of very thin and thick cloud types.

Given the present differences between the sampling
of an area and its vertical structure by ISCCP and the
separation of a GCM grid box into cloudy and clear
fractions, we recommend the following procedure for
application of this e parameterization in a model. For
adjacent cloud layers, assign to all layers the e (and eIR)
value appropriate for the cloud-top category of the top-
most layer. For separated cloud layers, use the e (and
eIR) values appropriate to the cloud-top category of each
individual layer. In the future, cloud vertical structure
data from the CloudSat radar can be used to investigate
whether the use of maximum-random overlap as a base
state and this application of the e parameterization to
this state is actually correct.
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APPENDIX

Alternate Representations of Cloud Variability

a. Statistical issues

A number of papers have considered the parameter-
ization of statistical distributions of cloud optical thick-
ness using analytical probability distribution functions,
most commonly the gamma distribution, probably be-
cause it can be analytically integrated over the two-
stream solution of the radiative transfer equation (Barker
et al. 1996; Barker and Wielicki 1997). The lognormal
distribution has also been found to be a useful approx-
imation to liquid water path statistics in the analysis of
large-scale datasets such as those analyzed here (Ca-
halan et al. 1994a; Oreopoulos and Davies 1998b). In
general, if we measure the mean of two functions of a
parameter [e.g., and ], then the maximum en-f (t) g(t)
tropy (ME) distribution associated with these measure-
ments is

p(t; a, b) 5 N exp[af (t) 1 bg(t)], (A1)

where N is the total population size and the constants,
a and b, can be estimated from and . The gam-f (t) g(t)
ma distribution and the lognormal distribution are the
ME distributions associated with [ f (t) 5 t, g(t) 5 ln(t)]
and [ f (t) 5 ln(t), g(t) 5 sln(t)], respectively. A desir-
able aspect of the ME formalism is that the estimates
of a and b are guaranteed to be sufficient statistics, as
opposed to using the method of moments (MOM),
which has been found to be problematic (Oreopoulos
and Davies 1998b). Using this formalism also allows
us to introduce a generalized probability distribution
function:

p(t; a, b) 5 N exp[a·t 1 b·R(t)], (A2)

where R(t) is the function relating albedo and optical
thickness that can be determined from the mean optical
thickness and albedo. This distribution guarantees that
there is no optical thickness or albedo bias by definition.
This type of function can be estimated directly from the
ISCCP dataset that reports both and , the latter oft t̂
which is proportional to albedo. If the cloud albedo were
strictly a logarithmic function of optical thickness, this
distribution would reduce to the gamma distribution;
however, cloud albedo depends on more parameters than
optical thickness.

b. Discrete gamma distribution approximation

The gamma distribution (e.g., Barker et al. 1996) of
ti (where the subscript indicates pixel number) may be
expressed as

n
nt 2nti i21p(t ; t , n) 5 [t G(n)] expi i 1 2 1 2t t

for t . 0. (A3)i

Here G(n) is the gamma function and n is the shape
parameter that represents the variability of the distri-
bution. In addition to the standard deviation and the
linear and radiatively weighted mean values of cloud
optical thickness, the ISCCP D1 dataset also reports a
six-interval distribution of optical thicknesses in ap-
proximately equal intervals of cloud albedo. Thus, an-
other way to represent the smaller-scale cloud optical
thickness variability would be to determine a gamma
function fit to these distributions. To be consistent with
Barker et al. (1996) in this illustration, the histograms
are truncated to the same range of optical thicknesses
and then normalized to account for the truncated pop-
ulations (which is particularly important for distribu-
tions with n , 2). The true albedo is determined directly
from the radiatively weighted average optical thickness;
the linear average and standard deviation are also cal-
culated from these histograms. All that remains is to
determine the shape parameter, n.

We compare different approaches for estimating n
from the ISCCP dataset. A common method is the meth-
od of moments

2
t

22MOM: n 5 5 V , (A4)1 2st

where V is the relative variance of the distribution (or
dispersion). This estimate cannot be guaranteed to have
reliable confidence intervals, but it has been found to
work where the distributions are unimodal and
‘‘smooth’’ (Newman et al. 1995). For less well-behaved
distributions, it does not work well (Oreopoulos and
Davies 1998b). In our global study, we frequently en-
countered ill-behaved optical thickness distributions (cf.
Fig. 4) and, therefore, sought a more robust determi-
nation of the gamma distribution that could be applied
to satellite data with coarser resolution (i.e., smaller
sample populations). We have employed the maximum
likelihood estimate (MLE) to determine n using

2121MLE: ñ exp[C(ñ)] 5 t exp[ln(t)], (A5)

where C is the digamma function and is the loga-ñ
rithmic average of n. The MLE for n is only asymp-
totically unbiased, similar to the MLE estimate of the
variance, so care should be exercised if sample popu-
lations are very small. This problem can be corrected
by using the ME method, which also provides confi-
dence intervals for n. We use an approximation to (A5)
because ISCCP reports the value of instead of :t̂ t̃

t̂
21 21 21t exp[ln(t)] ø t R [R(t)] 5

t

5 (1 2 e) (A6)

so that
21ñ exp[C(ñ)] ø (1 2 e). (A7)

This expression introduces an explicit relationship be-
tween the inhomogeneity parameter computed for a



582 VOLUME 15J O U R N A L O F C L I M A T E

FIG. A1. Cloud albedo error as function of the spatial inhomogeneity parameter, e (top left) for a plane-parallel cloud, (top right) for a
cloud with varying optical thicknesses in a gamma distribution using logarithmic mean and variance, for (bottom left) a gamma distribution
using linear mean and variance, and (bottom right) for a gamma distribution using linear and logarithmic mean values.

cloudy scene and the gamma distribution used to model
it. For the range of e encountered, (A7) may be ap-
proximated using

21n̂ 5 [e 2 ln(1 2 e)] (A8)

with an rms error of ;0.6% for 0.01 # e # 0.8. To
improve (A8), sample gamma distributions were gen-
erated for a range of n and values and the resultingt
e values computed. From this exercise it was determined
that (A8) could be modified to give a better approxi-
mation to the correct (as specified) shape parameter as
follows:

Quasi-MLE:

t̂ (1 2 e)t
21n9 5 n̂ 5 [e 2 ln(1 2 e)] , (A9)! !t t0 0

where t0 is a reference optical thickness value (515).
The largest remaining error in using (A9) is an over-
estimation of large n values; but, since such distributions

represent homogeneous situations, the radiative signif-
icance of this error is slight.

c. Evaluation of gamma distribution representations
at 3 h, 280-km scale

The relative success of the three gamma distribution
fits (MOM, MLE, and quasi-MLE) in modeling the ob-
served cloud fields was judged radiatively, that is, by
how well each fit reproduced the albedo of the original
clouds. Plane-parallel (homogeneous) albedo compu-
tations were also included for comparison. Note that
here we use the gamma function fits to calculate albedo
even though it can be obtained directly from the radia-
tively weighted mean optical thickness as we have
shown; however, such analytic functions might be useful
in GCM parameterizations to represent cloud-type de-
pendence.

Results using these three fits for the three groups of
ISCCP DX data used in section 3 are shown in Fig. A1
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as an absolute albedo error, Ai 2 Ahist, versus e. Frac-
tional errors (normalized by the histogram-average al-
bedo, Ahist, were avoided so as not to overemphasize
small absolute errors. Results were also not scaled by
cloud amount, so they represent a ‘‘worst-case’’ error.
The systematic overestimation inherent in the plane-
parallel assumption is clear in Fig. A1 (top left), as is
the considerable improvement gained by using any of
the gamma distribution models. Even for group A (e #
0.1), the average overestimate of cloud albedo using the
plane-parallel method is about 0.012. The MOM and
MLE methods reduce the average albedo error to about
0.002; the quasi-MLE method reduces the error further
to about 0.0004. Thus, all three methods reduce the error
substantially for homogeneous clouds as expected, since
in this case the optical thickness distributions are nearly
Gaussian in shape with small standard deviations.

For more inhomogeneous clouds (groups B and C),
the average albedo error of MOM is slightly smaller
than for MLE and quasi-MLE; but all three methods
reduce the plane-parallel bias by more than 90%. The
quasi-MLE method shows much less scatter than the
other two methods. For e . 0.2, the mean error of the
MOM decreases more than for the other two, but the
scatter becomes much more pronounced, especially at
moderate-to-high values of e, because of the use of the
variance in the computation of n. For unimodal distri-
butions, this is not a problem; but for the mixtures of
optically thin cirrus and optically thick convective
clouds common in the Tropics (i.e., bimodal distribu-
tions), this method can either overweight the thicker
clouds through their effect on the variance, when the
mean value is small, or the thinner clouds when the
mean value is larger. The MLE method is biased in-
creasingly high as e increases and exhibits significant
scatter as well because of the use of the logarithm as
an approximation to the radiative weighting in deter-
mining n. The quasi-MLE method does better but still
shows a weak trend with e, indicating that the scaling
used in (A7) does not fully account for the observed
variations of e with .n
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